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Preface

I DON’T  THINK  BEAUTIFUL  TESTING  COULD  HAVE  BEEN  PROPOSED , much less published, when

I started my career a decade ago. Testing departments were unglamorous places, only slightly

higher on the corporate hierarchy than front-line support, and filled with unhappy drones

doing rote executions of canned tests.

There were glimmers of beauty out there, though.

Once you start seeing the glimmers, you can’t help but seek out more of them. Follow the trail

long enough and you will find yourself doing testing that is:

• Fun

• Challenging

• Engaging

• Experiential

• Thoughtful

• Valuable

Or, put another way, beautiful.

Testing as a recognized practice has, I think, become a lot more beautiful as well. This is partly

due to the influence of ideas such as test-driven development (TDD), agile, and craftsmanship,

but also the types of applications being developed now. As the products we develop and the
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ways in which we develop them become more social and less robotic, there is a realization that

testing them doesn’t have to be robotic, or ugly.

Of course, beauty is in the eye of the beholder. So how did we choose content for Beautiful

Testing if everyone has a different idea of beauty?

Early on we decided that we didn’t want to create just another book of dry case studies. We

wanted the chapters to provide a peek into the contributors’ views of beauty and testing.

Beautiful Testing is a collection of chapter-length essays by over 20 people: some testers, some

developers, some who do both. Each contributor understands and approaches the idea of

beautiful testing differently, as their ideas are evolving based on the inputs of their previous

and current environments.

Each contributor also waived any royalties for their work. Instead, all profits from Beautiful

Testing will be donated to the UN Foundation’s Nothing But Nets campaign. For every $10 in

donations, a mosquito net is purchased to protect people in Africa against the scourge of

malaria. Helping to prevent the almost one million deaths attributed to the disease, the large

majority of whom are children under 5, is in itself a Beautiful Act. Tim and I are both very

grateful for the time and effort everyone put into their chapters in order to make this happen.

How This Book Is Organized
While waiting for chapters to trickle in, we were afraid we would end up with different versions

of “this is how you test” or “keep the bar green.” Much to our relief, we ended up with a diverse

mixture. Manifestos, detailed case studies, touching experience reports, and war stories from

the trenches—Beautiful Testing has a bit of each.

The chapters themselves almost seemed to organize themselves naturally into sections.

Part I, Beautiful Testers

Testing is an inherently human activity; someone needs to think of the test cases to be

automated, and even those tests can’t think, feel, or get frustrated. Beautiful Testing therefore

starts with the human aspects of testing, whether it is the testers themselves or the interactions

of testers with the wider world.

Chapter 1, Was It Good for You?

Linda Wilkinson brings her unique perspective on the tester’s psyche.

Chapter 2, Beautiful Testing Satisfies Stakeholders

Rex Black has been satisfying stakeholders for 25 years. He explains how that is beautiful.

Chapter 3, Building Open Source QA Communities

Open source projects live and die by their supporting communities. Clint Talbert and

Martin Schröder share their experiences building a beautiful community of testers.
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Chapter 4, Collaboration Is the Cornerstone of Beautiful Performance Testing

Think performance testing is all about measuring speed? Scott Barber explains why, above

everything else, beautiful performance testing needs to be collaborative.

Part II, Beautiful Process

We then progress to the largest section, which is about the testing process. Chapters here give

a peek at what the test group is doing and, more importantly, why.

Chapter 5, Just Peachy: Making Office Software More Reliable with Fuzz Testing

To Kamran Khan, beauty in office suites is in hiding the complexity. Fuzzing is a test

technique that follows that same pattern.

Chapter 6, Bug Management and Test Case Effectiveness

Brian Nitz and Emily Chen believe that how you track your test cases and bugs can be

beautiful. They use their experience with OpenSolaris to illustrate this.

Chapter 7, Beautiful XMPP Testing

Remko Tronçon is deeply involved in the XMPP community. In this chapter, he explains

how the XMPP protocols are tested and describes their evolution from ugly to beautiful.

Chapter 8, Beautiful Large-Scale Test Automation

Working at Microsoft, Alan Page knows a thing or two about large-scale test automation.

He shares some of his secrets to making it beautiful.

Chapter 9, Beautiful Is Better Than Ugly

Beauty has always been central to the development of Python. Neal Noritz, Michelle

Levesque, and Jeffrey Yasskin point out that one aspect of beauty for a programming

language is stability, and that achieving it requires some beautiful testing.

Chapter 10, Testing a Random Number Generator

John D. Cook is a mathematician and applies a classic definition of beauty, one based on

complexity and unity, to testing random number generators.

Chapter 11, Change-Centric Testing

Testing code that has not changed is neither efficient nor beautiful, says Murali

Nandigama; however, change-centric testing is.

Chapter 12, Software in Use

Karen N. Johnson shares how she tested a piece of medical software that has had a direct

impact on her nonwork life.

Chapter 13, Software Development Is a Creative Process

Chris McMahon was a professional musician before coming to testing. It is not surprising,

then, that he thinks beautiful testing has more to do with jazz bands than manufacturing

organizations.

Chapter 14, Test-Driven Development: Driving New Standards of Beauty

Jennitta Andrea shows how TDD can act as a catalyst for beauty in software projects.
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Chapter 15, Beautiful Testing As the Cornerstone of Business Success

Lisa Crispin discusses how a team’s commitment to testing is beautiful, and how that can

be a key driver of business success.

Chapter 16, Peeling the Glass Onion at Socialtext

Matthew Heusser has worked at a number of different companies in his career, but in this

chapter we see why he thinks his current employer’s process is not just good, but beautiful.

Chapter 17, Beautiful Testing Is Efficient Testing

Beautiful testing has minimal retesting effort, says Adam Goucher. He shares three

techniques for how to reduce it.

Part III, Beautiful Tools

Beautiful Testing concludes with a final section on the tools that help testers do their jobs more

effectively.

Chapter 18, Seeding Bugs to Find Bugs: Beautiful Mutation Testing

Trust is a facet of beauty. The implication is that if you can’t trust your test suite, then

your testing can’t be beautiful. Andreas Zeller and David Schuler explain how you can

seed artificial bugs into your product to gain trust in your testing.

Chapter 19, Reference Testing As Beautiful Testing

Clint Talbert shows how Mozilla is rethinking its automated regression suite as a tool for

anticipatory and forward-looking testing rather than just regression.

Chapter 20, Clam Anti-Virus: Testing Open Source with Open Tools

Tomasz Kojm discusses how the ClamAV team chooses and uses different testing tools,

and how the embodiment of the KISS principle is beautiful when it comes to testing.

Chapter 21, Web Application Testing with Windmill

Adam Christian gives readers an introduction to the Windmill project and explains how

even though individual aspects of web automation are not beautiful, their combination is.

Chapter 22, Testing One Million Web Pages

Tim Riley sees beauty in the evolution and growth of a test tool that started as something

simple and is now anything but.

Chapter 23, Testing Network Services in Multimachine Scenarios

When trying for 100% test automation, the involvement of multiple machines for a single

scenario can add complexity and non-beauty. Isaac Clerencia showcases ANSTE and

explains how it can increase beauty in this type of testing.

Beautiful Testers following a Beautiful Process, assisted by Beautiful Tools, makes for Beautiful

Testing. Or at least we think so. We hope you do as well.
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Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book

in your programs and documentation. You do not need to contact us for permission unless

you’re reproducing a significant portion of the code. For example, writing a program that uses

several chunks of code from this book does not require permission. Selling or distributing a

CD-ROM of examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,

publisher, and ISBN. For example: “Beautiful Testing, edited by Tim Riley and Adam Goucher.

Copyright 2010 O’Reilly Media, Inc., 978-0-596-15981-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read

books on your cell phone and mobile devices. Access new titles before they are available for

print, and get exclusive access to manuscripts in development and post feedback for the

authors. Copy and paste code samples, organize your favorites, download chapters, bookmark

key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital

access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596159818

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com

Acknowledgments
We would like to thank the following people for helping make Beautiful Testing happen:

• Dr. Greg Wilson. If he had not written Beautiful Code, we would never have had the idea

nor a publisher for Beautiful Testing.

• All the contributors who spent many hours writing, rewriting, and sometimes rewriting

again their chapters, knowing that they will get nothing in return but the satisfaction of

helping prevent the spread of malaria.

• Our technical reviewers: Kent Beck, Michael Feathers, Paul Carvalho, and Gary Pollice.

Giving useful feedback is sometimes as hard as receiving it, but what we got from them

certainly made this book more beautiful.

• And, of course, our wives and children, who put up with us doing “book stuff” over the

last year.

—Adam Goucher

xviii  P R E F A C E

http://oreilly.com/catalog/9780596159818
mailto:bookquestions@oreilly.com
http://oreilly.com
http://oreilly.com/catalog/9780596510046


C H A P T E R  F O U R

Collaboration Is the Cornerstone of
Beautiful Performance Testing

Scott Barber

PERFORMANCE  TESTING  IS  ALL  TOO  FREQUENTLY  THE  MOST  FRUSTRATING , complicated,

understaffed, time-crunched, misunderstood, combative, and thankless aspect of a software

development project, but it doesn’t have to be. I have experienced beautiful performance

testing firsthand on several occasions. In fact, it seems like most career performance testers

have at least one story about beautiful performance testing.

So, what are the attributes of beautiful performance testing? I think that beautiful performance

testing is:

• Desired

• Deliberate

• Useful

• Technical

• Social

• Respectful

• Humble

• Efficient

• (Appropriately) challenging
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• Value-driven

• Value-focused

But above all, I think that for performance testing to be beautiful, it must be collaborative.

In the stories that follow, I share with you the critical incidents that shaped my view of

performance testing beauty. Coincidentally, this chapter is also the story of how one software

development company’s approach to performance testing became increasingly beautiful over

the course of several development projects. While you read them, pay particular attention to

two things. First, notice that none of these stories starts out, shall we say, beautifully. Second,

notice that in each story collaboration was the key to progress, success, and/or conflict

resolution.

Setting the Stage
All of the events that follow occurred over a 14-month period during the Dot-Com Era at a

boutique custom software development company where I was the performance testing

technical lead and practice manager. The events span several development projects, but the

core project team was substantially the same throughout—and when I say project team, I am

referring to not just those who wrote the code, but also to the executives, account managers,

project management, business analysts, testers, system administrators, and technical support

staff.

Although I have done my best to recount these events accurately and objectively, what follows

is exclusively my perspective of the events that occurred. The events did occur in the sequence

in which they appear in this chapter, and I have not taken any intentional liberties with them,

other than to remove or replace offensive epithets with less offensive ones. In addition, I’d be

remiss if I didn’t mention that much of the identifying information related to individuals,

clients, and contracts has been changed to protect the innocent, the guilty, the shy, and those

I’ve lost touch with and couldn’t get permission to use their real names.

100%?!? Fail
I’d just been informed that I was to start working on a new project to build a computer-based

learning delivery and student progress tracking system (I’ll call it eVersity) for a Fortune 50

company on the following Monday. The project was officially entering the development phase,

which meant that the client had accepted our proof of concept and it was time to bring the rest

of the team onto the project. I was at my desk finishing some documentation for my previous

project when Harold, the test manager for the new project, walked up and, without preamble,

handed me a single sheet of paper while asking, “Can you test this?”
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Though I found the question insulting, I looked at the paper. I got as far as:

“System Performance Requirements:

• 100% of the web pages shall display in 5 seconds or less 100% of the time.

• The application shall…”

before writing “FAIL” on a sticky note, slapping the note on the paper, and handing it back to

Harold over my shoulder and going back to work. Harold, making no attempt to conceal his

anger at my note, asked, “What’s that supposed to mean?” Spinning my chair around to face

him, I replied, “I can test it if you want, but c’mon, it’s the Internet! You never get 100% of

anything!” Harold walked off in a huff.

Early the next week, Harold returned with another sheet of paper. Handing it to me, he simply

asked “Better?” This time I managed to read all of the bullets.

“System Performance Requirements:

• 95% of the web pages shall display in 5 seconds or less 95% of the time.

• The application shall support 1,000 concurrent users.

• Courses shall download completely and correctly on the first try 98% of the time.

• Courses shall download in 60 seconds or less 95% of the time.”

“Better? Yes. But not particularly useful, and entirely untestable. What is this for, anyway?” I

responded. Clearly frustrated, but calm, Harold told me that he’d been asked to establish the

performance requirements that were going to appear in our contract to the client. Now

understanding the intent, I suggested that Harold schedule a conference room for a few hours

for us to discuss his task further. He agreed.

As it turned out, it took more than one meeting for Harold to explain to me the client’s

expectations, the story behind his task, and for me to explain to Harold why we didn’t want

to be contractually obligated to performance metrics that were inherently ambiguous, what

those ambiguities were, and what we could realistically measure that would be valuable.

Finally, Harold and I took what were now several sheets of paper with the following bullets to

Sandra, our project manager, to review:

“System Performance Testing Requirements:

• Performance testing will be conducted under a variety of loads and usage models, to be

determined when system features and workflows are established.

• For internal builds, all performance measurements greater than the following will be

reported to the lead developer:

— Web pages that load in over 5 seconds, at any user volume, more than 5% of the time.

— Web pages that load in over 8 seconds, at any user volume, more than 1% of the time.

— Courses that do not download completely or correctly more than 2% of the time.

C O L L A B O R A T I O N  I S  T H E  C O R N E R S T O N E  O F  B E A U T I F U L  P E R F O R M A N C E  T E S T I N G  39



— Courses that take over 60 seconds to download, at any user volume, more than 5% of

the time.

— The current maximum load the system can maintain for 1 hr with 95% of all web pages

loading in 5 seconds or less and 95% of all the courses downloading completely and

correctly in 60 seconds or less.

• External builds will be accompanied by a performance testing report including:

— Web pages that load in over 5 seconds, at any user volume, more than 5% of the time.

— Web pages that load in over 8 seconds, at any user volume, more than 1% of the time.

— Courses that do not download completely or correctly more than 2% of the time.

— Courses that take over 60 seconds to download, at any user volume, more than 5% of

the time.

— The current maximum load the system can maintain for 1 hr with 95% of all web pages

loading in 5 seconds or less and 95% of the courses downloading completely and

correctly in 60 seconds or less.

• At the discretion of the project manager, other performance tests will be conducted that

are deemed valuable to the project based on requests or recommendations by [client name

deleted], the development team, or the performance test lead.”

Much to our chagrin, Sandra replied that Harold and I should work together more often, and

added our bullets verbatim into the client contract.

I fully admit that there was nothing beautiful about the process that led to Harold and I

collaborating to turn the original System Performance Requirements into the ultimate System

Performance Testing Requirements, but the result was. To be honest, when I found out that

Harold had written the original requirements doc that I had “failed” in dramatic fashion, I fully

expected to be removed from the project. But regardless of whether Harold tried to have me

removed from the project, even he would have acknowledged that there was a certain beauty

in the outcome that neither of us would have come up with on our own. Specifically:

• The shift from committing to achieving certain levels of performance to committing to

report under what conditions the performance goals were not being achieved

• Calling out that it may be some time before enough information would be available to

fully define the details of individual performance tests

• Leaving the door open for performance testing that supported the development process,

but that didn’t directly assess compliance with performance goals

Unfortunately, this was not to be the last un-beautiful interaction between Harold and me.
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OK, but What’s a Performance Test Case?

A few weeks later, Harold called to tell me he needed me to get all of the “performance test

cases” into the eVersity test management system by the end of the following week. I said, “OK,

but what’s a performance test case?” As you might imagine, that wasn’t the response he was

expecting. The rest of the conversation was short but heated, and concluded with me agreeing

to “do the best I could” by the end of that week so that he would have time to review my work.

As soon as I hung up the phone, I fired up the test management system to see if there were

any other test cases for what we called nonfunctional requirements (aka quality factors, or

parafunctional requirements), such as security or usability. Finding none, I started looking to

the functional test cases for inspiration. What I found was exactly what I had feared: a one-to-

one mapping between requirements and test cases, and almost all of the requirements were

of the form “The system shall X,” and almost all of the test cases were of the form “Verify that

the system [does] X.”

I stared at the screen long enough for my session to time out twice, trying to decide whether

to call Harold back in protest or try to shoehorn something into that ridiculous model (for the

record, I find that model every bit as ridiculous today as I did then). Ultimately, I decided to

do what I was asked, for the simple reason that I didn’t think I’d win the protest. The client

had mandated this test management system, had paid a lot of money for the licenses, and had

sent their staff to training on the system so they could oversee the project remotely. I simply

couldn’t imagine getting approval to move performance test tracking outside the system, so I

created a new requirement type called “Performance” and entered the following items:

• Each web page shall load in 5 seconds or less, at least 95% of the time.

• Each course shall download correctly and completely in 60 seconds or less, at least 98%

of the time.

• The system shall support 1,000 hourly users according to a usage model TBD while

achieving speed requirements.

I then created the three parallel test cases for those items and crossed my fingers.

To say that Harold was not impressed when he reviewed my work at the end of the week would

be a gross understatement. He must have come straight downstairs to the performance and

security test lab where I spent most of my time the instant he saw my entry. As he stormed

through the door, he demanded, “How can I justify billing four months of your time for three

tests?”

Although I had been expecting him to protest, that was not the protest I’d anticipated. Looking

at him quizzically, I responded by saying, “You can’t. Where did you get the idea that I’d only

be conducting three tests?” I’ll let you imagine the yelling that went on for the next 15 minutes

until I gave up protesting the inadequacy of the test management system, especially for

performance testing, and asked Harold what it was that he had in mind. He answered that he

wanted to see all of the tests I was going to conduct entered into the system.
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I was literally laughing at loud as I opened the project repository from my previous, much

smaller, project and invited him to come over and help me add up how many performance

tests I’d conducted. The number turned out to be either 967 or 4,719, depending on whether

you counted different user data as a different test. Considering that the five-person functional

test team had created slightly fewer than 600 test cases for this project, as opposed to

approximately 150 on the project I was referencing, even Harold acknowledged that his idea

was flawed.

We stared at one another for what felt like a very long time before Harold dialed the phone.

“Sandra, do you have some time to join Scott and me in the lab? Thanks. Can you bring the

client contracts and deliverable definitions? Great. Maybe Leah is available to join us as well?

See you in a few.”

For many hours, through a few arguments, around a little cursing, and over several pizzas,

Harold, Sandra, Leah (a stellar test manager in her own right who was filling the testing

technical lead role on this project), Chris (a developer specializing in security with whom I

shared the lab and who had made the mistake of wandering in while we were meeting), and

I became increasingly frustrated with the task at hand. At the onset, even I didn’t realize how

challenging it was going to be to figure out how and what to capture about performance testing

in our tracking system.

We quickly agreed that what we wanted to include in the tracking system were performance

tests representing valuable checkpoints, noteworthy performance achievements, or potential

decision points. As soon as we decided that, I went to the whiteboard and started listing the

tests we might include, thinking we could tune up this list and be done. I couldn’t have been

more wrong.

I hadn’t even finished my list when the complications began. It turns out that what I was listing

didn’t comply with either the terms of the contract or with the deliverables definitions that the

client had finally approved after much debate and many revisions. I don’t remember all of the

details and no longer have access to those documents, but I do remember how we finally

balanced the commitments that had been made to the client, the capabilities of the mandated

tracking system, and high-value performance testing.

We started with the first item on my list. Sandra evaluated the item against the contract. Harold

evaluated it against the deliverables definitions. Leah assessed it in terms of its usefulness in

making quality-related decisions. Chris assessed its informational value for the development

team. Only after coming up with a list that was acceptable from each perspective did we worry

about how to make it fit into the tracking system.

As it turned out, the performance requirements remained unchanged in the system. The

performance test cases, however, were renamed “Performance Testing Checkpoints” and

included the following (abbreviated here):
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• Collect baseline system performance metrics and verify that each functional task included

in the system usage model achieves performance requirements under a user load of 1 for

each performance testing build in which the functional task has been implemented.

— [Functional tasks listed, one per line]

• Collect system performance metrics and verify that each functional task included in the

system usage model achieves performance requirements under a user load of 10 for each

performance testing build in which the functional task has been implemented.

— [Functional tasks listed, one per line]

• Collect system performance metrics and verify that the system usage model achieves

performance requirements under the following loads to the degree that the usage model

has been implemented in each performance testing build.

— [Increasing loads from 100 users to 3,000 users, listed one per line]

• Collect system performance metrics and verify that the system usage model achieves

performance requirements for the duration of a 9-hour, 1,000-user stress test on

performance testing builds that the lead developer, performance tester, and project

manager deem appropriate.

The beauty here was that what we created was clear, easy to build a strategy around, and

mapped directly to information that the client eventually requested in the final report. An

added bonus was that from that point forward in the project, whenever someone challenged

our approach to performance testing, one or more of the folks who were involved in the

creation of the checkpoints always came to my defense—frequently before I even found out

about the challenge!

An interesting addendum to this story is that later that week, it became a company policy that

I was to be consulted on any contracts or deliverable definitions that included performance

testing before they were sent to the client for approval. I’m also fairly certain that this was the

catalyst to Performance Testing becoming a practice area, separate from Functional Testing,

and also what precipitated performance test leads reporting directly to the project manager

instead of to the test manager on subsequent projects.

You Can’t Performance Test Everything

One of the joys of being the performance testing technical lead for a company that has several

development projects going on at once is that I was almost always involved in more than one

project at a time. I mention this because the following story comes from a different project, but

did occur chronologically between the previous story and the next one.

This project was to build a web-based financial planning application. Although common today,

at the time this was quite innovative. The performance testing of the system was high priority

for two reasons:
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• We’d been hired for this project only after the client had fired the previous software

development company because of the horrible performance of the system it had built.

• The client had already purchased a Super Bowl commercial time slot and started shooting

the commercial to advertise the application.

Understandably, Ted, the client, had instructed me that he wanted “every possible navigation

path and every possible combination of input data” included in our performance tests. I’d tried

several methods to communicate that this was simply not an achievable task before that year’s

Super Bowl, but to no avail. Ted was becoming increasingly angry at what he saw as me

refusing to do what he was paying for. After six weeks of trying to solve (or at least simplify)

and document a massively complex combinatorics problem, I was becoming increasingly

frustrated that I’d been unable to help the developers track down the performance issues that

led Ted to hire us in the first place.

One afternoon, after Ted had rejected yet another proposed system usage model, I asked him

to join me in the performance test lab to build a model together. I was surprised when he said

he’d be right down.

I started the conversation by trying to explain to Ted that including links to websites maintained

by other companies as part of our performance tests without their permission was not only of

minimal value, but was tantamount to conducting denial-of-service attacks on those websites.

Ted wasn’t having any of it. At that moment, I realized I was standing, we were both yelling

at one another, and my fists were clenched in frustration.

In an attempt to calm down, I walked to the whiteboard and started drawing a sort of sideways

flowchart representing the most likely user activities on the website. To my surprise, Ted also

picked up a marker and began enhancing the diagram. Before long, we were having a calm

and professional discussion about what users were likely to do on the site during their first

visit. Somewhere along the way, Chris had joined the conversation and was explaining to us

how many of the activities we had modeled were redundant and thus interchangeable based

on the underlying architecture of the system.

In less than an hour, we had created a system usage model that we all agreed represented the

items most likely to be popular during the Super Bowl marketing campaign as well as the areas

of the application that the developers had identified as having the highest risk of performing

poorly. We’d also decided that until we were confident in the performance of those aspects of

the system, testing and tuning other parts of the application was not a good use of our time.

Within a week of that meeting, we had an early version of the test we’d modeled up and

running, and the developers and I were actively identifying and improving performance issues

with the system.

Once again, the story had started anything but beautifully. This time the beauty began to

blossom when Ted and I started working together to build a model at the whiteboard rather

than me emailing models for him to approve. The beauty came into full bloom when Chris
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brought a developer’s perspective to the conversation. Collaborating in real time enabled us to

not only better understand one another’s concerns, but also to discuss the ROI of various

aspects of the usage model comparatively as opposed to individually, which is what we’d been

doing for weeks.

This story also has an interesting addendum. As it happened, the whiteboard sketch that Ted,

Chris, and I created that day was the inspiration behind the User Community Modeling

Language (UCML™) that has subsequently been adopted as the method of choice for modeling

and documenting system usage for a large number of performance testers worldwide. For more

about UCML, visit http://www.perftestplus.com/articles/ucml.pdf.

The Memory Leak That Wasn’t
It was almost two months after the “OK, but what’s a performance test?” episode before we

were ready to start ramping up load with a reasonably complete system usage model on the

eVersity project. The single-user and 10-user tests on this particular build had achieved better

than required performance, so I prepared and ran a 100-user test. Since it was the first run of

multiple usage scenarios at the same time, I made a point to observe the test and check the

few server statistics that I had access to while the test was running.

The test ran for about an hour, and everything seemed fine until I looked at the scatter chart,

which showed that all the pages that accessed the application server started slowing down

about 10 minutes into the test and kept getting slower until the test ended. I surfed the site

manually and it was fine. I checked the logfiles from the load generation tool to verify that I

wasn’t seeing the effect of some kind of scripting error. Confident that it wasn’t something on

my end, I ran the test again, only this time I used the site manually while the test was running.

After about 15 minutes, I noticed those pages getting slow. I picked up the phone and called

Sam, the architect for the project, to tell him that he had a memory leak on the application

server.

Sam asked if I was running the test right then. I told him I was. I heard him clicking on his

keyboard. He asked if the test was still running. I told him it was. He said, “Nope, no memory

leak. It’s your tool,” and hung up.

I was furious. For the next two days I ran and re-ran the test. I scoured logfiles. I created tables

and graphs. I brought them to project meetings. I entered defect reports. I sent Sandra the URL

to the performance test environment and asked her to use the application while I ran tests.

Everyone seemed to agree that it was acting like a memory leak. By the end of day two, even

Sam agreed that it looked like a memory leak, but followed that up by saying, “…but it isn’t.”

Late on the third day after I’d first reported the issue, Sam called me and asked me to try the

test again and hung up. I launched the test. About 20 minutes later, Sam called back to ask

how the test looked. It looked great. I asked how he fixed it. He simply said, “Installed the

permanent license key. The temp had a limit of three concurrent connections.”
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Sam didn’t talk to me for the next couple of weeks. Since he wasn’t very talkative in the first

place, I wasn’t certain, but I thought I’d offended him. Then a surprising thing happened. Sam

called me and asked me to point “that test from the other week” at the development

environment and to bring the results upstairs when it was done.

When I got upstairs with the results, Sam said to me, “Impressive work the other week. It took

me over 20 hours to track down the license key thing. The tests we ran looked like a memory

leak, too…except that the memory counters were showing tons of free memory. Anyway, from

now on, why don’t we look at weird results together?”

From that time on, Sam demanded that management assigned me to all of his projects. He’d

frequently ask me to design and run tests that I didn’t completely understand, but that would

result in massive performance improvements within a day or two. I’d often call him and say,

“I’ve got some odd-looking results here, would you like to have a look?” Sometimes he’d tell

me why I was getting weird results, sometimes he’d want to take a look, and other times he’d

ask me to run the test again in an hour, but he never again dismissed my results as a tool

problem. And I never again announced the cause of a performance issue before confirming

my suspicions with Sam.

Of course, the beauty here is that Sam came to see me as a valuable resource to help him

architect better-performing applications with less trial and error on his part. In retrospect, I

only wish Sam had been more talkative.

Can’t Handle the Load? Change the UI
Very shortly after the “memory leak that wasn’t” incident, it was decision time for the financial

planning application. The application was functioning, but we simply did not believe that we

could improve the performance enough to handle the Super Bowl commercial–inspired peak.

I hadn’t been included in the discussion of options until at least two weeks after both the client

and the development team had become very concerned. I’m not exactly sure why I was invited

to the “what are we going to do” meeting with the client that day, but it turned out that

whoever invited me, intentionally or accidentally, was probably glad they did.

The short version of the problem was that the application gave all indications of being

completely capable of handling the return user load, but that, if the projections were close to

being correct, there was no way the architecture could handle the peak new user load

generated by the Super Bowl advertising campaign. What I didn’t know until I got to the

meeting on that day was that we’d reached the point of no return in terms of hardware and

infrastructure. The application was going to run in the existing environment. The question

now was, what to do about the usage peak generated by the marketing campaign?
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For about 30 minutes, I listened to one expensive and/or improbable idea after another get

presented and rejected. The most likely option seemed to be to lease four identical sets of

hardware and find a data center to host them, which was estimated to cost enough that every

time it came up, Ted shook his head and mumbled something about not wanting to lose his job.

Finally, I spoke up. I pointed out that there were really only two things that we couldn’t handle

large numbers of users doing all at once. One was “Generate your personalized retirement

savings plan,” and the other was “Generate your personalized college savings plan.” I also

pointed out that for someone to get to the point where those plans were relatively accurate,

they’d have to enter a lot of information that they probably didn’t have at their fingertips. I

then speculated that if we redesigned the UI so that those options weren’t available until users

had at least clicked through to the end of the questionnaire (as opposed to making it available

on every page of the questionnaire, virtually encouraging folks to click the button after each

piece of information they entered so they could watch the charts and graphs change), that

might reduce the number of plan generations enough to get through the marketing campaign.

I further commented that we could put the plan generation links back on each page after the

campaign was over.

The looks of shock and the duration of stunned silence lasted long enough that I actually

became uncomfortable. Eventually, a woman I didn’t know started scribbling on a sheet of

paper, then pulled out a calculator to do some calculations, then scribbled some more before

very quietly saying, “It might just work.” Everyone turned their stunned stares to her when

Ted asked her what she’d said. She repeated it, but added, “Well, not exactly what he said, but

what if we….”

To be honest, I partly don’t remember what she said, and I partly never understood it, because

she seemed to be speaking in some secret financial planning language to Ted. Regardless of the

details, as soon as she was done explaining, Ted said, “Do it!” and everyone started smiling and

praising me for solving the problem.

A few weeks later, I got a new build with a modified UI and usage model to test. It took a couple

of iterations of minor UI modifications and tuning, but we achieved our target load. I found

out much later that the marketing campaign was a success and that the system held up without

a glitch. In fact, the campaign went so well that a big bank bought the company, Ted got a

promotion, and of course, the big bank had their developers rebuild the entire application to

run on their preferred vendor’s hardware and software.

The obvious beauty here is that the project was successful and that the solution we came up

with was not prohibitively complicated or expensive. The less obvious beauty lies in the often-

overlooked value of involving people with several different perspectives in problem solving

work groups.
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It Can’t Be the Network
As it turned out, the eVersity project was canceled before the application made it into

production (and by canceled, I mean that client just called one day to tell us that their entire

division had been eliminated), so we never got a chance to see how accurate our performance

testing had been. On the bright side, it meant that the team was available for the client-server

to Web call-center conversion project that showed up a couple of weeks later.

The first several months of the project were uneventful from a performance testing perspective.

Sam and the rest of the developers kept me in the loop from the beginning. Jim, the client VP

who commissioned the project, used to be a mainframe developer who specialized in

performance, so we didn’t have any trouble with the contract or deliverables definitions related

to performance, and the historical system usage was already documented for us. Sure, we had

the typical environment, test data, and scripting challenges, but we all worked through those

together as they came up.

Then I ran across the strangest performance issue I’ve seen to this day. On the web pages that

were requesting information from the database, I was seeing a response time pattern that I

referred to as “random 4s.” It took some work and some help from the developers, but we

figured out that half of the time these pages were requested, they returned in about .25 seconds.

Half of the rest of the time, they’d return in about 4.25 seconds. Half of the rest of the time, in

8.25 seconds. And so on.

Working together, we systematically figured out all the things that weren’t causing the random

4s. In fact, we systematically eliminated every part of the system we had access to, which

accounted for everything except the network infrastructure. Feeling good about how well

things were going, I thought it was a joke when I was told that I was not allowed to talk to

anyone in the IT department, but it wasn’t. It seems that some previous development teams

had blamed everything on the IT department and wasted a ton of their time, so they’d created

a policy to ensure that didn’t happen again.

The only way to interact with the IT department was for us to send a memorandum with our

request signed by Jim, including detailed instructions, to the VP of the IT department through

interdepartmental mail. I drafted a memo. Jim signed it and sent it. Two days later, Jim got it

back with the word “No” written on it. Jim suggested that we send another memo that

described the testing we’d done that was pointing us in the direction of the network. That

memo came back with a note that said, “Checked. It’s not us.”

This went on for over a month. The more testing we did, the more convinced we were that

this was the result of something outside of our control, and the only part of this application

that was outside our control was the network. Eventually, Jim managed to arrange for a one-

hour working conference call with the IT department, ostensibly to “get us off their back.” We

set everything up so that all we had to do was literally click a button when the IT folks on the
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call were ready. Out entire team was dialed in on the call, just to make sure we could answer

any question they may have had.

The IT folks dialed in precisely at the top of the hour and asked for identification numbers of

the machines generating the load and the servers related to our application from the stickers

their department put on the computers when they were installed. A few minutes later they

told us to go ahead. We clicked the button. About five minutes of silence went by before we

heard muffled speaking on the line. One of the IT staff asked us to halt the test. He said they

were going to mute the line, but asked us to leave the line open. Another 20 minutes or so

went by before they came back and asked us to restart the test and let them know if the problem

was gone.

It took less than 10 minutes to confirm the problem was gone. During those 10 minutes,

someone (I don’t remember who) asked the IT staff, who had never so much as told us their

names, what they had found. All they would say is that it looked like a router had been

physically damaged during a recent rack installation and that they had swapped out the router.

As far as we knew, this interaction didn’t make it any easier for the next team to work with

this particular IT staff. I just kept thinking how lucky I was to be working on a team where I

had the full help and support of the team. During the six weeks between the time I detected

this problem and the IT department replaced the damaged router, the developers wrote some

utilities, stubbed out sections of the system, stayed late to monitor after-hours tests in real time,

and spent a lot of time helping me document the testing we’d done to justify our request for

the IT department’s time. That interaction is what convinced me that performance testing could

be beautiful.

It’s Too Slow; We Hate It

With the random 4s issue resolved, it was time for the real testing to begin: user acceptance

testing (UAT). On some projects, UAT is little more than a formality, but on this project (and

all of the projects I’ve worked on since dealing with call-center support software), UAT was

central to go-live decisions. To that point, Susan, a call-center shift manager and UAT lead for

this project, had veto authority over any decision about what was released into production and

when.

The feature aspects of UAT went as expected. There were some minor revisions to be made,

but nothing unreasonable or overly difficult to implement. The feedback that had us all

confused and concerned was that every single user acceptance tester mentioned—with greater

or lesser vehemence—something about the application being “slow” or “taking too long.”

Obviously we were concerned, because there is nothing that makes a call-center

representative’s day worse than having to listen to frustrated customers’ colorful epithets when

told, “Thank you for your patience, our system is a little slow today.” We were confused

because the website was fast, especially over the corporate network, and each UAT team was

comprised of 5 representatives taking 10 simulated calls each, or about 100 calls per hour.
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Testing indicated that the application could handle up to nearly 1,000 calls per hour before

slowing down noticeably.

We decided to strip all graphics and extras from the application to make it as fast as possible,

and then have myself or one of the developers observe UAT so we could see for ourselves what

was slow. It confused us even more that the application was even faster afterward, that not

one of the people observing UAT had noticed a user waiting on the application even once, and

that the feedback was still that the application was slow. Predictably, we were also getting

feedback that the application was ugly.

Finally, I realized that all of our feedback was coming either verbally from Susan or from

Susan’s summary reports, and I asked if I could see the actual feedback forms. While the

protocol was that only the UAT lead got to see the actual forms, I was permitted to review them

jointly with Susan. We were at the third or fourth form when I got some insight. The comment

on that form was “It takes too long to process calls this way.” I asked if I could talk to the user

who had made that comment, and Susan set up a time for us to meet.

The next afternoon, I met Juanita in the UAT lab. I asked her to do one of the simulations for

me. I timed her as I watched. The simulation took her approximately 2.5 minutes, but it was

immediately clear to me that she was uncomfortable with both the flow of the user interface

and using the mouse. I asked her if she could perform the same simulation for me on the

current system and she said she could. It took about 5 minutes for the current system to load

and be ready to use after she logged in. Once it was ready, she turned to me and simply said,

“Ready?”

Juanita typed furiously for a while, then turned and looked at me. After a few seconds, I said,

“You’re done?” She smirked and nodded, and I checked the time: 47 seconds. I thanked her

and told her that I had what I needed.

I called back to the office and asked folks to meet me in the conference room in 30 minutes.

Everyone was assembled when I arrived. It took me fewer than 10 minutes to explain that

when the user acceptance testers said “slow,” they didn’t mean response time; they meant that

the design of the application was slowing down their ability to do their jobs.

My time on the project was pretty much done by then, so I don’t know what the redeveloped

UI eventually looked like, but Sam told me that they had a lot more interaction with Susan

and her user acceptance testers thereafter, and that they were thrilled with the application

when it went live.

For a performance tester, there are few things as beautiful as call-center representatives who

are happy with an application you have tested.
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Wrap-Up
In this chapter, I’ve shared with you a series of formative episodes in my evolution as a

performance tester. The fact that these are real stories from real projects that I worked on, and

the fact that they were sequential over approximately 14 months, only makes them more

powerful.

Several years ago, I learned a technique called critical incident analysis that can be used to

identify common principles used on or applied to complex tasks, such as performance testing.

I learned about this technique from Cem Kaner and Rebecca Fiedler during the third Workshop

on Heuristic and Exploratory Teaching (WHET). We were trying to determine how effective

this approach would be in identifying core skills or concepts that people use when testing

software, which would then be valuable to build training around.

According to Wikipedia:

A critical incident can be described as one that makes a significant contribution—either positively

or negatively—to an activity or phenomenon. Critical incidents can be gathered in various ways,

but typically respondents are asked to tell a story about an experience they have had.

These stories are my critical incidents related to the importance of collaboration in performance

testing. In these stories, a wide variety of performance testing challenges were tackled and

resolved through collaboration: collaboration with other testers, collaboration with project

management, collaboration with clients, collaboration with the development team,

collaboration with IT staff, and collaboration with end users. All of my performance testing

experiences corroborate what these stories suggest, that collaboration is the cornerstone of

beautiful performance testing.
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